Structure-based directed evolution of a monomeric triosephosphate isomerase: toward a pentose sugar isomerase.

نویسندگان

  • Mirja Krause
  • Peter Neubauer
  • Rik K Wierenga
چکیده

Through structure-based and directed evolution approaches, a new catalytic activity has been established on the (β/α)8 barrel enzyme triosephosphate isomerase (TIM). This work started from ml8bTIM, a monomeric variant of TIM, in which the phosphate-binding loop (loop-8) had been shortened. Structure analysis suggested an additional point mutation (V233A), converting ml8bTIM into A-TIM. A-TIM has no detectable TIM activity, but it binds the TIM transition state analog, 2-phosphoglycollate. In an in vivo selection approach, we aimed at transferring the activity of three sugar isomerases (L-arabinose isomerase (L-AI), D-xylose isomerase A (D-XI) and D-ribose-5-phosphate isomerase (D-RPI)) onto A-TIM. Escherichia coli knockout variants were constructed, lacking E. coli L-AI, D-XI and D-RPI activities, respectively. Through a systematic approach, new A-TIM variants were obtained only from selection experiments with the L-AI knockout strain. Selection for D-RPI activity was impossible because of an impaired strain due to the gene knockouts. The selection for D-XI activity was unsuccessful, showing the importance of the starting protein for obtaining new biocatalytic properties. The L-AI-directed evolution experiments show that A-TIM already has residual in vivo L-AI activity. Most of the mutations providing A-TIM with enhanced L-AI activity are located in the loops between β-strands and the subsequent α-helices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling, mutagenesis, and structural studies on the fully conserved phosphate-binding loop (loop 8) of triosephosphate isomerase: toward a new substrate specificity.

Loop 8 (residues 232-242) in triosephosphate isomerase (TIM) is a highly conserved loop that forms a tight binding pocket for the phosphate moiety of the substrate. Its sequence includes the fully conserved, solvent-exposed Leu238. The tight phosphate-binding pocket explains the high substrate specificity of TIM being limited to the in vivo substrates dihydroxyacetone-phosphate and D-glyceralde...

متن کامل

Design, creation, and characterization of a stable, monomeric triosephosphate isomerase.

Protein engineering on trypanosomal triosephosphate isomerase (TIM) converted this oligomeric enzyme into a stable, monomeric protein that is enzymatically active. Wild-type TIM consists of two identical subunits that form a very tight dimer involving interactions of 32 residues of each subunit. By replacing 15 residues of the major interface loop by another 8-residue fragment, a variant was co...

متن کامل

Protein engineering with monomeric triosephosphate isomerase (monoTIM): the modelling and structure verification of a seven-residue loop.

Protein engineering experiments have been carried out with loop-1 of monomeric triosephosphate isomerase (monoTIM). Loop-1 of monoTIM is disordered in every crystal structure of liganded monoTIM, but in the wild-type TIM it is a very rigid dimer interface loop. This loop connects the first beta-strand with the first alpha-helix of the TIM-barrel scaffold. The first residue of this loop, Lys13, ...

متن کامل

Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis

The inhibition of triosephosphate isomerase (TPI) in glycolysis by the pyruvate kinase (PK) substrate phosphoenolpyruvate (PEP) results in a newly discovered feedback loop that counters oxidative stress in cancer and actively respiring cells. The mechanism underlying this inhibition is illuminated by the co-crystal structure of TPI with bound PEP at 1.6 Å resolution, and by mutational studies g...

متن کامل

Subunit interface mutation disrupting an aromatic cluster in Plasmodium falciparum triosephosphate isomerase: effect on dimer stability.

A mutation at the dimer interface of Plasmodium falciparum triosephosphate isomerase (PfTIM) was created by mutating a tyrosine residue at position 74, at the subunit interface, to glycine. Tyr74 is a critical residue, forming a part of an aromatic cluster at the interface. The resultant mutant, Y74G, was found to have considerably reduced stability compared with the wild-type protein (TIMWT). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering, design & selection : PEDS

دوره 28 6  شماره 

صفحات  -

تاریخ انتشار 2015